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Final Report, ARO/MURI, W911NF-08-2-0032 
 

Electrical Control of Magnetic Dynamics in Hybrid Metal-Semiconductor Systems 
 

Daniel C. Ralph, David D. Awschalom, Robert A. Buhrman, Ramamoorthy Ramesh, Darrell G. 
Schlom, Lu. J. Sham, and Stuart A. Wolf 

 
For this final report, the program manager Dr. John Prater has requested that we identify the 
main accomplishments of the MURI and indicate how this MURI has moved the field as a whole 
forward.  Therefore this report will not describe all of the research performed by the MURI, but 
will focus briefly on four main areas of accomplishments: 
 
1.  Efficient manipulation of magnetic devices using spin torque from the spin Hall effect. 
2.  Spin transfer torque from a topological insulator. 
3.  Voltage-driven magnetic reversal using multiferroic BiFeO3. 
4.  Electrical and optical control of single spins in diamond and new quantum materials 
 
I. Efficient manipulation of magnetic devices using spin torque from the spin Hall effect 
 When this MURI began in 2008, the most 
efficient mechanism known for the electrical 
manipulation of magnetic devices was spin-transfer 
torque from a spin-polarized current. In this 
mechanism, an unpolarized charge current is 
converted to a spin-polarized current by passage 
through a thin magnetic layer or a magnetic tunnel 
junction so that it undergoes spin filtering, and then 
this spin-polarized current applies a torque to another 
magnetic layer downstream by direct transfer of 
angular momentum. Currently, a long list of 
companies (e.g., Crocus Technologies, Everspin 
Technologies, Global Foundries, Hitachi, IBM, Intel, 
Qualcomm, Samsung, Sony, Spin Transfer 
Technologies, TDK, Toshiba) are investing in the 
development of nonvolatile magnetic memories which use spin-transfer torque as the writing 
mechanism, and in 2013 Everspin Technologies began selling the first commercial products 
based on this effect.  
 Despite its rapid commercial development, the spin transfer torque mechanism has some 
limitations. Because each electron carries an angular momentum of  ! / 2  and transfers this 
angular momentum at most once to the magnet, the strength of the torque per unit current has an 
upper limit equal to  ! / 2  per unit charge in the current. This limits the potential efficiency of 
spin torque switching in memory applications and (because the size of the memory element is at 
present limited by the size of a transistor needed to source the current) it also presents an 
obstacle for scaling spin torque memories to large densities. One primary accomplishment of this 
MURI is the discovery that certain heavy metals (W, Ta, Pt) possess a giant spin Hall effect 
(SHE) (Fig. 1) that can provide much more efficient manipulation of magnetic devices than 
conventional spin transfer torque, exceeding by a factor of 10 or more the previous limit of  ! / 2  
angular momentum transferred per electron. The fundamental reason for this improved efficiency 

 
Fig. 1.  Illustration of the spin Hall effect 
in a heavy metal. 
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is that in spin Hall samples each 
electron can transfer angular 
momentum to the ferromagnetic layer 
many times while traveling through the 
device (inset in Fig. 2).  Also, because 
the resulting flow of spin current is 
perpendicular to the charge current, the 
SHE provides new opportunities for 
hybrid devices in which spin currents 
can be injected efficiently into 
insulating and semiconducting 
materials without the need to pass large 
charge current densities through these 
high-resistivity materials. 
 The MURI’s work on the giant 
spin Hall effect resulted in one Science 
paper,1 three Physical Review Letters,2-

4 one Applied Physics Letter,5 and one 
Physical Review B paper.6 The MURI’s contributions to this field started with the development 
of improved methods for measuring the strength of the SHE, which showed that most of the 
previous measurements of the SHE in metals were incorrect — they greatly underestimated the 
strength of the effect. The MURI was the first to point out that torque from the SHE was more 
efficient than the upper bound of  ! / 2  per unit charge that applies to the conventional spin-
transfer torque mechanism.2 The MURI provided direct demonstrations of this improved 
efficiency by using the spin-Hall effect to switch magnetic layers with magnetizations oriented 
both in the sample plane1,5 and perpendicular to the plane,1,2 and we pointed2 out that the giant 
SHE explained previously-mysterious results from other groups concerning current-driven 
magnetic domain wall motion. (The switching of perpendicularly-magnetized layers had also 
been demonstrated by a different research group,7 but they ascribed the effect to a different 
mechanism, a Rashba effect in the magnetic layer rather than the spin Hall effect in the heavy 
metal.)  The MURI discovered the two materials that currently have the largest-known spin Hall 
effects, β-Ta and β-W. These two materials are already used routinely in magnetic device 
fabrication, which should enable rapid development of commercial magnetic memories based on 
the SHE. In addition to potential memory applications, the MURI has also demonstrated that the 
giant spin Hall torque from a direct current can excite steady-state magnetic precession for use in 
producing magnetic nano-oscillators.4 These findings have been rapidly reproduced and 
extended by other researchers. The MURI’s May 2012 Science paper1 has already been cited 159 
times and two of the PRLs2,3 have been cited 109 and 71 times.  

2. Spin transfer torque from a topological insulator  
 The MURI has very recently discovered that the topological insulator Bi2Se3 can be used 
to generate current-induced spin transfer torques that are another order of magnitude more 
efficient at room temperature than even the spin Hall torque effects described above, with the 
results published in Nature.8 This effect can be understood as arising from a locking between the 
electron wavevector and spin orientation for electrons in surface state of a topological insulator.9-

11 Research performed by Kang Wang’s group after learning of our results indicates that the 
effect can be stronger still at cryogenic temperatures.12  This discovery of spin torques generated 

Fig. 2: The charge current Je and the spin current Js are 
perpendicular to each other in the spin Hall effect. High 
efficiency is possible because each electron transfers spin 
several times as indicated in the inset. 
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by a topological insulator is very exciting from a fundamental-science point of view.  In terms of 
applications, unlike the torque from the spin Hall effect which can be used straightforwardly 
with already existing magnetic devices, to take advantage of the intrinsic high efficiency of the 
topological-insulator spin-torque for practical technologies will require the development of new 
types of magnetic devices.  This is because topological insulator devices must be integrated with 
insulating ferromagnetic layers (rather than conventional metallic ferromagnets) in order that the 
applied current is not wasted by being shunted away from the topological insulator through the 
magnet.  The development of magnetic technologies based on topological insulators and 
insulating ferromagnets represents an important opportunity for future research and 
development.  

3. Voltage-driven magnetic reversal using multiferroic BiFeO3 
 One of the primary original goals 
of the MURI was to develop efficient 
voltage-based (as opposed to current-
based) magnetic manipulation schemes 
based on the room-temperature 
multiferromic material BiFeO3, with the 
goal being to eliminate Ohmic losses so 
as to yield improved energy efficiency for 
magnetic technologies.  The culmination 
of this line of research has been the 
demonstration of reproducible 180° 
reversal of in-plane magnetized domains 
in ferromagnetic CoFe layers on BiFeO3 
by a low-voltage (5-7 V) signal applied in 
the out-of-plane direction.  The paper reporting this result is currently out to reviewers at 
Nature.13  This work improves upon previous results which showed switching driven by an in-
plane electric field, but which required > 100 V, close to the threshold for sample destruction, 
and was not reliably reproducible. The new out-of-plane field result is somewhat surprising in 
that if one considers only the force exerted by the electric field then by fundamental symmetry 
arguments the application of an out-of-plane electric field should not be able to produce full 180° 
in-plane rotation of individual domains in BiFeO3.  The MURI has shown instead that 180° 
reversal is achieved by a 2-step process that results from both the applied electric field and 
boundary conditions related to strain within bilayer. The energy consumption per switch per unit 
area of these magnetoelectric spin-valve devices is 480 µJ/cm2, roughly an order of magnitude 
lower than an optimized conventional spin torque device, and comparable to projections for 
magnetic memories operated by a spin Hall torque.  Future work will be aimed at incorporating 
the multiferroic reversal mechanism into practical device geometries. 

4. Electrical and optical control of single spins in diamond and new quantum materials 
 The MURI has produced several field-leading results related to improving quantum 
control of single spins in diamond NV centers, to extending the capability to manipulate single 
spins beyond diamond to other materials, and to developing applications of quantum defects as 
magnetic-field and temperature sensors.  Among other papers, this has resulted in three 
publications in Science,14-16 one in Nature,17 and two in the Proceedings of the National 
Academy of Sciences.18,19 The highlights of this research include: 

 
Fig. 3.  Schematic of a magnetic devics on BiFeO3 
and anomalous magnetoresistance curves 
demonstrating magnetic reversal by a perpendicular 
electric field. 
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 Gigahertz control of a single electron spin at room temperature.  We explored the high 
frequency limits to manipulating a single spin in the solid state. To push resonant microwave 
control of single NV centers at ambient conditions up to gigahertz rates, we fabricated coplanar 
waveguides on diamond substrates. These on-chip structures enabled the generation of large 
oscillating magnetic fields (~500 G) that produce spin rotations on the same timescale as Larmor 
precession and provide an opportunity to study an unusual regime in spin resonance.  Under 
these conditions reproducible coherent spin flips occur in sub-nanosecond timescales - faster 
than expected in standard spin resonance.  To gain more insight into these dynamics, we 
performed numerical simulations by using pulses measured from the experiment with no free 
parameters. The calculations revealed remarkably good qualitative and quantitative agreement 
with the measurements. Contrary to conventional thinking, this breakdown of the rotating wave 
approximation provides new opportunities for time-optimal quantum control of a single spin, and 
demonstrated quantum control in the GHz regime. The results were published in Science.14 

 
 Density functional theory prediction & discovery of new quantum materials for hybrid 
systems.  Identifying and designing physical systems for use as qubits, the basic units of quantum 
information, are critical steps in the development of quantum systems for exploring fundamental 
materials physics, advanced sensing instrumentation, and quantum information processing. 
Among the possibilities in the solid state, the NV center in diamond stands out for its 
robustness—its quantum state can be initialized, manipulated, and measured with high fidelity at 
room temperature. Under the MURI effort we developed a method to systematically identify 
other deep center defects in different materials with similar quantum-mechanical properties. We 
presented a list of physical criteria that these centers and their hosts should meet and explained 
how these requirements can be used in conjunction with electronic structure theory to 
intelligently sort through candidate defect systems. To illustrate these points in detail, we 
compared electronic structure calculations of the NV center in diamond with those of several 
deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects 
in other tetrahedrally coordinated semiconductors. This work was published in the Proceedings 
of the National Academy of Sciences,18 and led to the Awschalom group’s later discovery of spin 
qubits in SiC, spin-dipole coupling control, and recently, experimental measurements of single 
spin coherence in this system with millisecond-scale relaxation times.  In addition, the 
predictions of spin coherence using defects in ZnO have been observed by Professor Greg Fuchs 
at Cornell. 
 Electrical tuning of individual electron spins.  Two important challenges in creating and 
controlling single spins are to find new schemes for manipulating individual quantum states in a 
scalable manner, and to create truly identical quantum states for entanglement. In contrast to 
employing local magnetic fields, we developed micron-scale devices to manipulate electric fields 

 

 

 

Fig. 4. Co-planar waveguides on diamond 
chips with 1 micron feature sizes. Data 
shows 630 MHz Rabi oscillations on a 
single spin in the box. Circuit operates 
above 1 GHz. 

17



 5 

in three dimensions, to compensate the intrinsic local strain and electrostatic fields of individual 
NV centers and achieve full electrical control of the orbital Hamiltonian. Furthermore, by 
analyzing the Stark shifts as a function of applied voltages, we infer a surprising amplification 
and rectification of the local electric field, consistent with electrostatic contributions from 
photoionized charge traps within the diamond host. By harnessing this reproducible effect, we 
can electrically tune the NV-center Hamiltonian to arbitrary points across an extremely large 
frequency range. By coupling multiple NV centers to indistinguishable photons with this 
technique, photonic networks could provide a quantum bus to coherently couple distant NV 
centers, and entanglement swapping protocols could enable long-distance quantum key 
distribution. The results were published in Physical Review Letters.20 Soon afterwards, this 
discovery led to the experimental demonstration of quantum entanglement using single spins in 
diamond separated over a few meters (Delft). 

 
Fig. 5. (left) Four-terminal device enabling local electric field control around a single spin, identified by 
the PL image. (right) Range of voltage tuning showing ~10 GHz frequency tunability with modest bias to 
create identical Hamiltonians (PLE images showing anticrossings of spin state). 
 
 Demonstration of a single-spin nuclear memory. In addition to having an addressable 
electronic spin, the NV center in diamond contains a nuclear spin on its nitrogen atom, which is 
an attractive candidate for a quantum memory due to both a long spin coherence time and its 
deterministic presence. We investigated coherent swaps between the NV center electronic spin 
state and the nuclear spin state of nitrogen using Landau-Zener transitions performed outside the 
asymptotic regime, a technique successfully employed in atomic physics.  The swap gates are 
generated using lithographically fabricated waveguides that we have designed and implemented 
to form a high-bandwidth, two-axis vector magnet on the diamond substrate.  We successfully 
demonstrated swap times as short as 120 ns with fidelities up to 92±5% at room temperature. 
These experiments provide tools for coherently manipulating and storing quantum information in 
a scalable solid-state system at room temperature, and show that a single nuclear spin may be 
used as a local quantum memory in solid state materials.  This research was published in Nature 
Physics.21 
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